Introducing a New Limit States Design Concept to Railway Concrete Sleepers: An Australian Experience

نویسندگان

  • Sakdirat Kaewunruen
  • Alex M. Remennikov
  • Martin H. Murray
چکیده

Over 50 years, a large number of research and development projects with respect to the use of cementitious and concrete materials for manufacturing railway sleepers have been significantly progressed in Australia, Europe, and Japan (Wang, 1996; Murray and Cai, 1998; Wakui and Okuda, 1999; Esveld, 2001; Freudenstein and Haban, 2006; Remennikov and Kaewunruen, 2008). Traditional sleeper materials are timber, steel, and concrete. Cost-efficiency, superior durability, and improved track stability are the main factors toward significant adoption of concrete materials for railway sleepers. The sleepers in a track system, as shown in Figure 1, are subjected to harsh and aggressive external forces and natural environments across a distance. Many systemic problems and technical issues associated with concrete sleepers have been tackled over decades. These include pre-mature failures of sleepers, concrete cancer or ettringite, abrasion of railseats and soffits, impact damages by rail machinery, bond-slip damage, longitudinal and lateral instability of track system, dimensional instability of sleepers, nuisance noise and vibration, and so on (Pfeil, 1997; Gustavson, 2002; Kaewunruen and Remennikov, 2008a,b, 2013). These issues are, however, becoming an emerging risk for many countries (in North and South Americas, Asia, and the Middle East) that have recently installed large volumes of concrete sleepers in their railway networks (Federal Railroad Administration, 2013). As a result, it is vital to researchers and practitioners to critically review and learn from previous experience and lessons around the world. Although those problems have been resolved through a systemic approach, there has been a significant demand to optimize the use of materials and to reduce wastes in concrete sleeper production. In doing so, there have been two research trends: materials and design improvement. The outcomes from both research directions must enhance and comply with the systemic performance and specific criteria as well as the operational environments of such railway networks. Often engineering specifications by rail authorities are in place to mitigate and monitor imminent risks that could potentially interconnect with other elements. Because of the systemic complexities, the potential of many material-driven researches becomes limited and relates to only traditional materials. For example, composite materials were developed purposely to equate just timber characteristics. Also, a recycled polymer material was tested as a timber-replacement alternative (Manalo et al., 2010). Breaking through the systemic complexities, a research outcome has led to an introduction of limit states design concept to concrete sleepers in Australia (Remennikov et al., 2012). The change in design concept (which is about 5–6 years behind the European counterpart) empowers the leaner and greener potential for manufacturing sleepers: either by reducing material wastes or by embracing new material innovation. The contemporary design philosophy for railway concrete sleepers is based on the “allowable stress principle” taking into account only the quasi-static wheel loads, which results in overly conservative, deficient design for concrete sleepers. The permissible stress design concept has fundamentally dominated in current Australian and some international design standards for concrete sleepers (i.e. in North America and Asia). Field data have also raised concerns about the permissible stresses design technique for concrete sleepers, which considerably relies on material strength reductions and then leads to over-designing concrete sleepers. It is well known that the permissible stress design method does not consider the ultimate strength of materials, probabilities of actual loads, and risks associated with failures and other operational and maintenance factors. Empirical data collected by railway organizations report that railway tracks, especially railway concrete sleepers, might have untapped capacity that could bring potential economic advantage to infrastructure owners (Kaewunruen and Remennikov, 2009a,b). The research project to study the actual load carrying capacity of concrete sleepers was developed as a collaborative project between several Australian universities and the industry partners within the framework of the Australian Cooperative Research Center for Railway Engineering and Technologies (RailCRC). The research tasks were required to perform fundamental studies of the loading conditions, the static

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental and Numerical Study on the Effect of Different Types of Sleepers on Track Lateral Resistance

Lateral resistance of railway track is one of the most important parameters in lateral stability. This parameter depends!on the conditions of different components of ballasted railway track (such as density of ballast layer, sleeper spacing, type of sleeper, etc.). From this perspective, type of sleeper has an important effect on lateral resistance. However in some conditions, in technical and ...

متن کامل

Evaluating the Structural Behavior of Turnout Sleepers in the Case of Raising Speed

In this research, the structural behavior of timber and concrete sleepers in a standard railway turnout is evaluated, in the case of raising speed. In approaching this evaluation, current practices in the structural analysis of sleepers are surveyed and then, the sensitivity analysis with ABAQUS software is made based on selected criteria (bending and shear stresses as well as contact pressure)...

متن کامل

Investigation on simulation of train loading on prestressed concrete sleepers

Railway concrete sleepers have been developed and utilized in railway industry for over 50 years. Cyclic loading because of vibration on sleepers due to the train loading and the velocity of train itself and also a small percentage of bad wheels, can eventually lead to a crack network and failure of component. The objective of this study is to investigate the load carrying capacity of the selec...

متن کامل

Numerical Modeling of Railway Track Supporting System using Finite-Infinite and Thin Layer Elements

The present contribution deals with the numerical modeling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behavior between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area betw...

متن کامل

Sensitivity Analysis of Fastenings’ Types on Track's Life-Cycle

During the study for the dimensioning as well as the selection of the individual materials constituting a railway track, the ballast and the substructure present residual deformations, directly related to the deterioration of the geometry of the track. The slighter the residual deformations and the slower their alteration over time is, the better the quality of the track. The actions acting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014